World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Tropical Tropopause Ice Clouds: a Dynamic Approach to the Mystery of Low Crystal Numbers : Volume 13, Issue 19 (07/10/2013)

By Spichtinger, P.

Click here to view

Book Id: WPLBN0003991013
Format Type: PDF Article :
File Size: Pages 18
Reproduction Date: 2015

Title: Tropical Tropopause Ice Clouds: a Dynamic Approach to the Mystery of Low Crystal Numbers : Volume 13, Issue 19 (07/10/2013)  
Author: Spichtinger, P.
Volume: Vol. 13, Issue 19
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2013
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Spichtinger, P., & Krämer, M. (2013). Tropical Tropopause Ice Clouds: a Dynamic Approach to the Mystery of Low Crystal Numbers : Volume 13, Issue 19 (07/10/2013). Retrieved from http://sonyebookreaderlibrary.com/


Description
Description: Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität, Mainz, Germany. The occurrence of high, persistent ice supersaturation inside and outside cold cirrus in the tropical tropopause layer (TTL) remains an enigma that is intensely debated as the ice supersaturation puzzle. However, it was recently confirmed that observed supersaturations are consistent with very low ice crystal concentrations, which is incompatible with the idea that homogeneous freezing is the major method of ice formation in the TTL. Thus, the tropical tropopause ice supersaturation puzzle has become an ice nucleation puzzle. To explain the low ice crystal concentrations, a number of mainly heterogeneous freezing methods have been proposed. Here, we reproduce in situ measurements of frequencies of occurrence of ice crystal concentrations by extensive model simulations, driven by the special dynamic conditions in the TTL, namely the superposition of slow large-scale updraughts with high-frequency short waves. From the simulations, it follows that the full range of observed ice crystal concentrations can be explained when the model results are composed from scenarios with consecutive heterogeneous and homogeneous ice formation and scenarios with pure homogeneous ice formation occurring in very slow (< 1 cm s−1) and faster (> 1 cm s−1) large-scale updraughts, respectively. This statistical analysis shows that about 80% of TTL cirrus can be explained by classical homogeneous ice nucleation, while the remaining 20% stem from heterogeneous and homogeneous freezing occurring within the same environment. The mechanism limiting ice crystal production via homogeneous freezing in an environment full of gravity waves is the shortness of the gravity waves, which stalls freezing events before a higher ice crystal concentration can be formed.

Summary
Tropical tropopause ice clouds: a dynamic approach to the mystery of low crystal numbers

Excerpt
DeMott, P., Cziczo, D., Prenni, A., Murphy, D., Kreidenweis, S., Thomson, D., Borys, R., and Rogers, D.: Measurements of the concentration and composition of nuclei for cirrus formation, P. Natl. Acad. Sci., 100, 14655–14660, 2003.; Flury, T., Wu, D. L., and Read, W. G.: Correlation among cirrus ice content, water vapor and temperature in the TTL as observed by CALIPSO and Aura/MLS, Atmos. Chem. Phys., 12, 683–691, doi:10.5194/acp-12-683-2012, 2012.; Forster, P. M. and Shine, K. P.: Assessing the climate impact of trends in stratospheric water vapor, Geophys. Res. Lett., 29, 1086, doi:10.1029/2001GL013909, 2002.; Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and Mote, P. W.: Tropical Tropopause Layer, Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267, 2009a.; Barahona, D. and Nenes, A. : Parameterization of cirrus cloud formation in large-scale models: Homogeneous nucleation, J. Geophys. Res., 113, D11211, doi:10.1029/2007JD009355, 2008.; Barahona, D. and Nenes, A.: Dynamical states of low temperature cirrus. Atmos. Chem. Phys., 11, 3757–3771, doi:10.5194/acp-11-3757-2011, 2011.; Boehm, M. D. and Verlinde, J.: Stratospheric influence on upper tropospheric tropical cirrus, Geophys. Res. Lett., 27, 3209–3212, 2000.; Bretherton, C. S. and Smolarkiewicz, P. K.: Gravity waves, compensating subsidence and detrainment around cumulus clouds, J. Atmos. Sci., 46, 740–759, 1989.; Fueglistaler, S., Legras, B., Beljaars, A., Morcrette, J.-J., Simmons, A., Tompkins, A. M., and Uppala, S.: The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF reanalyses, Q. J. Roy. Meteor. Soc., 135, 21–37, 2009b.; Froyd, K. D., Murphy, D. M., Sanford, T. J., Thomson, D. S., Wilson, J. C., Pfister, L., and Lait, L.: Aerosol composition of the tropical upper troposphere, Atmos. Chem. Phys., 9, 4363–4385, doi:10.5194/acp-9-4363-2009, 2009.; Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106, 2003.; Fujiwara, M., Iwasaki, S., Shimizu, A., Inai, Y., Shiotani, M., Hasebe, F., Matsui, I., Sugimoto, N., Okamoto, H., Nishi, N., Hamada, A., Sakazaki, T., and Yoneyama, K.: Cirrus observations in the tropical tropopause layer over the western Pacific, J. Geophys. Res., 114, D09304, doi:10.1029/2008JD011040, 2009.; Gary, B. L.: Mesoscale temperature fluctuations in the stratosphere, Atmos. Chem. Phys., 6, 4577–4589, doi:10.5194/acp-6-4577-2006, 2006.; Gensch, I., Bunz, H., Baumgardner, D., Christensen, L., Fahey, D., Hermann, R., Lawson, P., Popp, P., Smith, J., Webster, C., Weinstock, E., Wilson, J., Peter, T., and Krämer, M.: Supersaturations, Microphysics and Nitric Acid Partitioning in a Cold Cirrus observed during CR-AVE 2006: An Observation-Modeling Intercomparison Study, Environ. Res. Lett., 3, 035003, doi:10.1088/1748-9326/3/3/035003, 2008.; Gierens, K., Kohlhepp, R., Dotzek, N., and Smit, H. G.: Instantaneous fluctuations of temperature and moisture in the upper troposphere and tropopause region. Part 1: Probability densities and their variability, Meteorol. Z., 16, 221–231, 2007.; Gill, A. E.: Some simple solutions for heat-induced tropical circulation, Q. J. Roy. Meteor. Soc., 106, 447–462, 1980.; Hoyle, C., Luo, B., and Peter, T.: The Origin of High Ice Crystal Numb

 

Click To View

Additional Books


  • Do Biomass Burning Aerosols Intensify Dr... (by )
  • Emissions of Organic Aerosol Mass, Black... (by )
  • Source Apportionment of Ambient Fine Par... (by )
  • A New Method for Measuring Optical Scatt... (by )
  • Uncertainties in Estimating Mercury Emis... (by )
  • Fluxes and Concentrations of Volatile Or... (by )
  • An Alternative Method Estimating Hygrosc... (by )
  • The Climatic Effects of the Direct Injec... (by )
  • Volcanic So2 Fluxes Derived from Satelli... (by )
  • Effect of Aerosols and No2 Concentration... (by )
  • Ch4 and Co Distributions Over Tropical F... (by )
  • Tethered Balloon-borne Aerosol Measureme... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Sony eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.