World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

A Spatial Resolution Threshold of Land Cover in Estimating Regional Terrestrial Carbon Sequestration : Volume 6, Issue 4 (05/08/2009)

By Zhao, S.

Click here to view

Book Id: WPLBN0004005348
Format Type: PDF Article :
File Size: Pages 24
Reproduction Date: 2015

Title: A Spatial Resolution Threshold of Land Cover in Estimating Regional Terrestrial Carbon Sequestration : Volume 6, Issue 4 (05/08/2009)  
Author: Zhao, S.
Volume: Vol. 6, Issue 4
Language: English
Subject: Science, Biogeosciences, Discussions
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Li, Z., Sohl, T. L., Liu, S., & Zhao, S. (2009). A Spatial Resolution Threshold of Land Cover in Estimating Regional Terrestrial Carbon Sequestration : Volume 6, Issue 4 (05/08/2009). Retrieved from

Description: Arctic Slope Regional Corporation (ASRC) Research and Technology Solutions, Contractor to US Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198, USA. Changes in carbon density (i.e., carbon stock per unit area) and land cover greatly affect carbon sequestration. Previous studies have shown that land cover change detection strongly depends on spatial scale. However, the influence of the spatial resolution of land cover change information on the estimated terrestrial carbon sequestration is not known. Here, we quantified and evaluated the impact of land cover change databases at various spatial resolutions (250 m, 500 m, 1 km, 2 km, and 4 km) on the magnitude and spatial patterns of regional carbon sequestration in the southeastern United States using the General Ensemble biogeochemical Modeling System (GEMS). Results indicated a threshold of 1 km in the land cover change databases and in the estimated regional terrestrial carbon sequestration. Beyond this threshold, significant biases occurred in the estimation of terrestrial carbon sequestration, its interannual variability, and spatial patterns. In addition, the overriding impact of interannual climate variability on the temporal change of regional carbon sequestration was unrealistically overshadowed by the impact of land cover change beyond the threshold. The implications of these findings directly challenge current continental- to global-scale carbon modeling efforts relying on information at coarse spatial resolution without incorporating fine-scale land cover dynamics.

A spatial resolution threshold of land cover in estimating regional terrestrial carbon sequestration

Achard, F., Eva, H. D., Mayaux, P., Stibig, H. J., and Belward, A.: Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s, Global Biogeochem. Cy., 18, GB2008, doi:10.1029/2003GB002142, 2004.; Binford, M. W., Gholz, H. L., Starr, G., and Martin, T. A.: Regional carbon dynamics in the southeastern US coastal plain: Balancing land cover type, timber harvesting, fire, and environmental variation, J. Geophys. Res., 111, D24S92, doi:10.1029/2005JD006820, 2006.; Cairns, M. A., Brown, S., Helmer, E. H., and Baumgardner, G. A.: Root biomass allocation in the world's upland forests, Oecologia, 111, 1–11, 1997.; Brown, S., Schroeder, P., and Birdsey, R.: Aboveground biomass distribution of US eastern hardwood forests and the use of large trees as an indicator of forest development, Forest Ecol. Manag., 96, 37–47, 1997.; Canadell, J. G.: Land use effects on terrestrial carbon sources and sinks, Sci. China Ser. C, 45, 1–9, 2002.; Chapin, F. S., Woodwell, G. M., Randerson, J. T., et al.: Reconciling carbon-cycle concepts, terminology, and methods, Ecosystems, 9, 1041–1050, 2006.; Chase, J. M. and Leibold, M. A.: Spatial scale dictates the productivity–biodiversity relationship, Nature, 416, 427–430, 2002.; Crawley, M. J. and Harral, J. E.: Scale dependence in plant biodiversity, Science, 291, 864–868, 2001.; Fang, J. Y., Chen, A. P., Peng, C. H., Zhao, S. Q., and Ci, L.: Changes in forest biomass carbon storage in China between 1949 and 1998, Science, 292, 2320–2322, 2001.; Garten, C. T. and Ashwood, T. L.: Land Cover Differences in Soil Carbon and Nitrogen at Fort Benning, Georgia, ORNL/TM-2004/14. Oak Ridge National Laboratory, Oak Ridge, TN 37831, 2004.; Goodale, C. L., Apps, M. J., Birdsey, R. A., et al.: Forest carbon sinks in the Northern Hemisphere, Ecol. Appl., 12, 891–899, 2002.; Häme, T., Stenberg, P., Anderson, K., Rauste, Y., Kennedy, P., Folving, S., and Sarkeala, J.: AVHRR-based forest proportion map of the Pan-European area, Rem. Sens. Environ., 77, 76–91, 2001.; Houghton, R. A., Hackler, J. L., and Lawrence, K. T.: The US carbon budget: Contributions from land-use change, Science, 285, 574–578, 1999.; Houghton, R. A.: Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000, Tellus B, 55, 378–390, 2003.; Houghton, R. A. and Goodale, C. L.: Effects of land-use change on the carbon balance of terrestrial ecosystems, in: Ecosystems and Land use Change, edited by: DeFries, R. S., Asner, G. P., and Houghton, R. A., American Geophysical Union, Washington, DC, 85–98, 2004.; Hurtt, G. C., Pacala, S. W., Moorcroft, P. R., Caspersen, J., Shevliakova, E., Houghton, R. A., and Moore III, B.: Predicting the future of the US carbon sink, P. Natl. Acad. Sci. USA, 99, 1389–1394, 2002.; Jenkins, J. C., Birdsey, R. A., and Pan, Y.: Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data, Ecol. Appl., 11, 1174–1193, 2001.; Jung, M., Vetter, M., Herold, M., et al.: Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models, Global Biogeochem. Cy., 21, GB4021, doi:10.1029/2006GB002915, 2007.; Kauppi, P. E., Ausubel, J. H., Fang, J. Y., Mather, A. S., Sedjo, R. A., and Waggoner, P. E.: Returning forests analyzed with the forest identity, P. Natl. Acad. Sci. USA, 103, 17574–17579, 2006.; Kimball, J. S., Running, S. W., and Saatchi, S. S.: Sensitivity of bo


Click To View

Additional Books

  • Equatorial Pacific Peak in Biological Pr... (by )
  • Food Quality Determines Sediment Communi... (by )
  • Does Vegetation Parameterization from Eo... (by )
  • Estimating the Carbon Dynamics of South ... (by )
  • Environmental Controls of Greenhouse Gas... (by )
  • Effects of Grazing on Leaf Traits and Ec... (by )
  • Atmospheric Water Soluble Organic Nitrog... (by )
  • Dependence of Co2 Advection Patterns on ... (by )
  • The Variability of Radiative Balance Ele... (by )
  • Carbon Dioxide Emissions from an Acacia ... (by )
  • Characterization of the Bio-optical Anom... (by )
  • Biological Productivity in the Mauritani... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Sony eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.